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Abstract 

 
The sheer amount of data produced by modern 

science research has created a need for the construction 
and understanding of “data-intensive systems”, large-
scale, distributed systems which integrate information.  
The formal nature of constructing such software 
systems; however, is relatively unstudied, and has been 
a large focus of the super-computing and distributed 
computing communities, rather than the software 
engineering communities.  These data-intensive systems 
exhibit characteristics which appear fruitful for 
research from a software engineering, and software 
architectural focus.  From our experience, the 
methodologies and notations for design and 
implementation of data-intensive systems look to be a 
good starting point for this important research area.  
This paper presents our experience with OODT, a 
software architectural style, and middleware-based 
implementation for data-intensive systems developed 
and maintained at the Jet Propulsion Laboratory.  To 
date, OODT has been successfully evaluated in several 
different science domains including Planetary Science 
with NASA’s Planetary Data System (PDS) and Cancer 
Research with the National Cancer Institute (NCI). 
 
1. Introduction 

Science data management has seen an enormous 
increase in recent years, both in terms of the quantity of 
data generated, and in the complexity of the data itself.  
With the advent of new technologies and paradigms 
such as Grid-based systems [1,20],  distributed-object 
middlewares [2,21] and wrapper-based information 
extraction tools [3], there has been a change in practice 
from developing one-off data management solutions 

which manage data independently (with little attention 
paid to future interoperability with other systems), to 
developing architectures and middlewares which are 
able to integrate and re-use existing data resources, such 
as web sites and legacy databases.  This potential for re-
use allows one to both imagine and realize the 
construction of large-scale distributed data management 
systems, whose main purpose is to query, locate, access, 
process and distribute data for potential users.   

The data-intensive nature of these systems; however, 
shifts the focus from traditional software engineering 
methodologies and practices to believing that hardware, 
processing power, parallelism, and technology alone 
will be enough to construct software which can: 

 
1. Access data in legacy data resources 
2. Discover data which may be unknown at 

system run-time 
3. Correlate the different data models which 

describe each data resource 
4. Integrate the software interfaces to the 

legacy data resources.  
 
Existing work in data-intensive systems severely 

lacks any common software engineering design 
constructs and relations between architectural 
components and implementation-level decisions.  Our 
work has focused on this very area, the design and 
construction of large-scale data-intensive systems.  We 
have developed an architectural style for data-intensive 
systems which allows software developers to construct 
architectural designs which address issues 1 through 4 
above.  In addition, a middleware implementation 
framework of the architectural style has been 
constructed and deployed.  We have coined our 
architecture, and subsequent middleware 



implementation, OODT (Object Oriented Data 
Technology). 

Section 2 describes the OODT architectural style.  
Section 3 covers the OODT middleware; a java based 
reference implementation of the OODT architectural 
style, and ties the middleware back to the architectural 
style assumptions and properties.  Section 4 presents 
two deployments of the OODT style and middleware in 
the planetary science and cancer research domains, 
which both share many of the same data-intensive 
system requirements presented above.  Section 5 surveys 
related work in data-intensive systems.  Section 6 
addresses open issues within OODT. Section 7 rounds 
out the paper. 
 
2. An Architectural Style for Data-
Intensive Systems 

One method of defining an architectural style has 
been to define the primitive building blocks, software 
components and connectors, and then define legal 
topologies of these primitive building blocks needed to 
construct systems that implement the style itself [4, 16, 
19].  Using these core definitions, system 
implementations are constructed in the style, and 
analyzed to verify that key assumptions of the style at 
design-time are validated by the implemented system at 
implementation time.  We use this method to construct 
the basis for the OODT architectural style.  To begin, 
we define the terms used across the definitions of the 
style as follows: 

 Data Source – Any entity that can provide data 
(e.g. a database, a web site, a data producing 
software system and so on) 

 Metadata – Describes the content, quality, 
conditions, and other characteristics of data 
(“data about data”). 

 Data Model – A description of the data 
provided by a data source, i.e. the metadata for 
all data in a data source. 

 Data element – Metadata that describes one 
facet of the data from a particular data source.  
For example, in the case of book data, Title, 
would be one possible data element. 

 Resource – A data source, a pointer to a unit of 
data, or a unit of data which can be queried, 
followed or retrieved respectively. 

 Data Product – A unit of data or metadata 
which can be retrieved from a data source. 

 
2.1 Components 

The core components for OODT are Product 
Servers, Profile Servers and Query Servers [5]: 

 
• Product Servers abstract away data source 

interfaces (such as SQL, File Systems, HTTP) 

into source-independent interfaces for retrieval 
of data which satisfy the user queries.   

• Profile Servers serve back metadata [5] in the 
form of resource profile data structures, which 
provide data for deciding what resources 
satisfy particular queries.   

• Query Servers accept user queries, and then 
use profile servers to determine what resources 
to query and collect in order to satisfy the 
query and return data products. The Query 
Server then aggregates and returns back the 
federated data products to the caller. 

 
2.1.1 Product Servers 

Product Servers abstract away data source dependent 
interfaces to data by wrapping [6] the data source 
interface such that it can support OODT queries.  OODT 
queries are in the format of one or more un-ordered 
(keyword comparison operator value) predicates which 
themselves are joined by zero or more logical operators 
(i.e. AND, OR, etc).  Comparison operators are 
operators such as “EQUALS, GREATER THAN and 
LIKE”.   

OODT queries are posed against a set of Common 
Data Elements (which formulate a high-level data model 
for the data-intensive system, referred to from here on as 
a Data Dictionary), and thus the set of allowable 
keywords  in each predicate comes from the set of the 
common data elements in the system‘s data dictionary.  
Each product server contains zero or more Query 
Handlers which serve back different types of data 
products from each data resource.  Our rationale behind 
having more than one query handler per product server 
is due to the fact that there may be multiple types of data 
products that are stored in the same data source.  A case 
like this could be imagined in a relational database, 
which stores both binary images of Mars, and also 
metadata containing information about the space 
instrument which captured each image.  Each query 
handler contains an translation function t(q), which 
maps the query from the data dictionary domain, to a 
query in the domain which the data source understands 
(i.e. maps common data elements against Source Data 
Elements, data elements in the data source domain).  
This function is represented by: 
(1)   2

''
1 ,,)( DqqqDqqt ∈⎯→⎯∈=  

The main goal is to take the abstract query against 
the common data elements, and map that into something 
that the underlying data sources that are integrated 
understand.  An example of this translation would be as 
follows.  Given an OODT query such as “BookType = 
Fiction AND Author = Cricthon” and a relational 
database containing book data, the OODT query is 
translated into:   select books.* where book.type 
= ‘fiction’ and book.author = ‘crichton’. 
 



2.1.2 Profile Servers 
Profile Servers respond to OODT queries, and return 

descriptions of resources which can satisfy the system 
query. To achieve this functionality, profile servers store 
resource Profiles which describe the data elements and 
semantic relationships that each data resource supports.  
In this fashion, a profile server can receive an OODT 
query, and match each keyword data element and 
associated semantic constraints to a particular resource 
that a profile describes, and return the matching 
profile(s) which satisfy the query.  This scenario is 
illustrated in Figure 1. 

 
Figure 1.  Query q and matching Profile of Resource 
 

The profile structure is based on two internationally 
accepted standards, ISO/IEC 11179 [7] to describe the 
structure of data elements, and the Dublin Core [8] set 
of data elements, which are used to describe any 
electronic resource.  Our choices for these standards are 
explained further in [5] and beyond the scope of this 
paper, but we refer to them here in order to motivate the 
discussion of the profile structure.  The profile structure 
contains metadata about the profile itself, such as a 
unique ID, a name for the profile, and an author of the 
profile.  We refer to this profile metadata as Profile 
Attributes.  The next piece of the metadata that the 
profile contains is an implementation and extension of 
the Dublin Core elements to describe the resource that 
the profile describes.  These elements include Creator, 
Name and Author.  Further, our Dublin Core extensions 
include the addition of specific data elements to describe 
resources, (1) a Resource Location element to describe a 
resource’s location (physical locations such as URLs are 
supported, as well as OODT-specific URNs [10] which 
we detail later) and (2) A taxonomy to categorize the 
type of resource (we refer to this element as Resource 
Class).  Resource Class can be a product server, another 
profile server, or the data product itself. We refer to this 
extended Dublin Core metadata as Resource Attributes.  
The final piece of metadata that we include in profiles is 
domain-specific data elements which describe the 
resource in its originating domain. For example, in the 
Planetary Data System [11], the data element “Target 
Name” is used to describe each data product’s 
originating “target” (i.e. planet).  These domain-specific 

data elements are called Profile Elements.  The profile 
metadata is summarized in Table 1 below. 

 
Similar to product servers, each profile server 

contains zero or more query handlers which accept an 
OODT query, and then query for the profiles which the 
profile server manages.  The profile query handlers are 
used to abstract away the underlying data source which 
stores the resource profiles and return the profiles much 
the same way that product servers return data products. 
 
2.1.3 Query Servers 

Query Servers are responsible for “putting it all 
together”.  Initially a query server is bootstrapped with 
an initial set of root profile servers, much like 
Berkeley’s DNS [9].  The query server contains a list of 
collected data products which is populated using the 
following process.  Upon receiving an OODT-style 
query, the query server proceeds to query each one of 
the profile servers it knows of to retrieve the profiles 
which match resources which satisfy the query.  This 
querying of profile servers is performed by Querier 
components.  Each querier component is given a 
location for a profile server, and is able to query the 
profile server, and retrieve the list of profiles (if any) 
that describe resources that could satisfy the particular 
query.  Each profile returned contains a resource class 
attribute (recall section 2.1.2) which is examined to 
determine where to go next in order to retrieve the 
requested data products.  There are three cases which 
occur during this examination: 

 
• The Resource Class points to another 

Profile Server:  In this case, the querier 
creates another instance of a querier 
component, seeded with the returned profile 
server resource location attribute as its root 
profile server. 

• The Resource Class points to a Product 
Server:  In this case, the querier creates a 
Product Client component instance, which 
it seeds with the resource location attribute 
of the returned profile.  The product client 
component retrieves the data products from 
the product server, and then the product 
client returns the data products back to the 
querier component.  The querier component 
then adds its data products to the collected 



data products list in the query server, and 
ends its thread lifespan. 

• The Resource Class points to an 
individual data product: In this case, the 
querier retrieves the individual data product 
and adds it to the collect data products list 
in the query server and ends its component 
lifespan. 

Once the Querier components have ended their 
respective lifespan, the Query Server is done collecting 
data products in its collected list.  The collected data 
product list is then returned to the original user query.   
 
 

 
Figure 2.  The OODT Software Components 

 
2.2 Connectors 

OODT supports one type of connector, a Messaging 
Layer, which allows OODT components to 
communicate with each other.  The main form of 
communication between OODT components is the 
Query Object.  A query object contains the query q 
(recall Section 2.1.1), and the query result, i.e. the 
collected list of data products (recall Section 2.1.3).  The 
query object also contains a set of associated metadata 
regarding the query, such as Maximum Accepted 
Results, Accepted Mime Types (of data products within 
the collected data products list), and Query Description. 
 
2.2.1 Messaging Layer 

The OODT Messaging Layer’s responsibility is to 
route query objects between query server, product 
server, and profile server components, and return the 
query object to the correct User (typically the user 
which contacted the query server).  The messaging layer 

essentially provides a message bus which allows many 
Query Objects to be transferred between OODT 
components in a variety of different messaging 
Protocols including Unicast, (query object sent from an 
originating OODT component to one other component), 
Multicast (query object sent from an originating OODT 
component to a group of other OODT components 
defined by some common attribute, e.g. a URN [10].) 
and Broadcast (query object sent from an originating 
OODT component to all other OODT components 
known to the originator). 
 
2.3 Configurations 

OODT Configurations are constructed from the core 
software components described above.  First each data 
source that OODT will integrate is identified and a 
product server component is instantiated for each data 
source to be integrated.  Once all the product servers are 
attached to the data sources, profile server components 



are created to serve back profiles which point to the 
product servers created in the previous step.  Last, one 
or more query server components are created, and 
seeded with the list of profile servers created in the 
previous step, and the query servers can then begin 
accepting queries and returning data. 

Section 4 presents two deployments (and subsequent 
architectural configurations of OODT components) of 
the OODT architectural style in two diverse domains, 
Planetary Science, and Cancer Research. 

 
3. Architecture-based Middleware 

The core OODT middleware has been implemented 
in Java, using Sun’s Java Development Kit.  
Programmers extend OODT core component classes 
such as Profile Servers, Product Servers, and Query 
Servers. 

For the implementation of the product server 
component, programmers are required to write 
QueryHandler classes which implement the 
jpl.oodt.product.[layer].QueryHandler 
interface. Layer represents the type of messaging layer 
connector the programmer wants to use.  Currently, 
CORBA and RMI exist, and we are working on a 
SOAP-based messaging layer at the time of writing this 
paper.  The interface method to a query handler for a 
product server is the query method.  The query method 
takes as input a query object (recall Section 2.2) which 
can be represented and serialized into XML.  The query 
object contains the query q (recall Section 2.1.1), and 
the associated query metadata (recall Section 2.2).  
After retrieving the requested data products, the product 
server query method returns the query object back to the 
user, this time including any results which satisfied the 
query to the underlying data resource. The query 
interface method thus becomes the abstract translation 
function t(q) discussed in section 2.1.1.   We present 
below an XML DTD definition of our query object 
structure. 

 
<!ELEMENT query 
 (queryAttributes,queryResultModeId, 
         queryPropogationType,queryPropogationLevels, 
         queryMimeAccept*,queryMaxResults, 
         queryResults,queryKWQString, 
  queryStatistics?, querySelectSet, 
         queryFromSet,queryWhereSet, 
  queryResultSet)> 
    <!ELEMENT queryAttributes 
      (queryId, queryTitle*, queryDesc*, queryType*, 
       queryStatusId*, querySecurityType*,  
       queryParentId*, queryChildId*, 
       queryRevisionNote*,queryDataDictId*)> 
    <!ELEMENT queryStatistics (statistic*)> 
    <!ELEMENT querySelectSet 
 (queryElement*)> 
    <!ELEMENT queryFromSet 
 (queryElement*)> 
    <!ELEMENT queryWhereSet 
 (queryElement*)> 
      <!ELEMENT queryElement 
        (tokenRole*, tokenValue*)> 
    <!ELEMENT statistic (url, time)> 
    <!ELEMENT queryResultSet 
 (resultElement*)> 
      <!ELEMENT resultElement 
        (resultId*, resultMimeType*, 
         profId*, identifier*, resultHeader, 
         resultValue*)> 

    <!ELEMENT resultHeader (headerElement*)> 
    <!ELEMENT headerElement (elemName, elemType?, 

elemUnit?)> 
 

The product server itself supports the exact same 
query method as its query handler component(s).  When 
a query comes into the product server (via CORBA or 
RMI), the product server creates worker threads which 
each are given a particular query handler object 
reference, as well as a reference to the xml-based query 
object (containing the overall result list).  In parallel, 
each worker thread invokes its query handler’s query 
method, and passes it the reference to the product 
server’s xml query object, so that each query handler 
upon return will aggregate the list of data products into 
the results section of the query object.   

The profile server component implementation centers 
around the use of XML-based profiles, which profile 
data resources (recall Section 2.1.2 and Table 1).  An 
XML DTD for the profile structure is given below: 

 
<!ELEMENT profiles 
(profile*)> 
<!ELEMENT profile 
(profAttributes, 
resAttributes, 
profElement*)> 
<!ELEMENT profAttributes 
(profId, profVersion?, profType, 
profStatusId, profSecurityType?, profParentId?, 
profChildId*, 
profRegAuthority?, profRevisionNote*, profDataDictId?)> 
<!ELEMENT resAttributes 
(Identifier, Title?, Format*, Description?, Creator*, 
Subject*, 
Publisher*, Contributor*, Date*, Type*, Source*, 
Language*, Relation*, Coverage*, Rights*, 
resContext+, resAggregation?, resClass, resLocation*)> 
<!ELEMENT profElement 
(elemId?, elemName, elemDesc?, elemType?, elemUnit?, 
elemEnumFlag, (elemValue* | (elemMinValue, elemMaxValue)), 
elemSynonym*, 
elemObligation?, elemMaxOccurrence?, elemComment?)> 

 
The profile server component is implemented by 

writing profile server query handlers, which return back 
resource profiles in the above XML format.  The profile 
server itself provides two interface methods, (1) A query 
method which accepts an xml based query object and 
returns resources profiles which can satisfy queries 
against the data dictionary data elements used in query 
object’s query string and (2) A getProfile method which 
accepts a profile Id, and returns the exact profile which 
matches the given id.  The profile server query method 
returns profiles by querying (in parallel using the worker 
thread method discussed for the product server 
implementation) its respective profile query handlers. 
Each profile query handler implements the same 2 
methods as its parent profile server, which allows each 
query handler to return profiles asynchronously back to 
the parent.   

Upon creating query handlers that return both data 
products, and profiles, the method for linking the Query 
Handlers to the product and profile servers respectively 
can be performed via XML configuration files, or at 
system-runtime.  The XML configuration file essentially 
sets each product and profile server specified to have the 
associated query handlers, and instantiates each 



respective component.  After instantiation, the system 
determines what type of messaging connector is used 
(either RMI or CORBA), and then registers the profile 
and product server components with the appropriate 
registry (in RMI, Sun’s RMI Registry can be used, in 
CORBA, the CORBA Name Service is used).  Query 
server components can then be instantiated and given 
the list of profile servers which exist in the system.  
Each profile, product, and query Server component is 
identified in the form of URNs [10], which uniquely 
identify the distributed component in the respective 
registry type.  Our URN’s are in the form of 
urn:oodt:[layer]:[component-name].  The 
respective layer registry enforces the requirement that 
the combination of [layer]: [component-name] must be 
unique when components register at run-time. 

The implementation of the query server component 
typically comes last, which is directly tied to its 
architectural style notion of “bringing it all together”.  
The query server component is seeded (either at run-
time via configuration files or compile time via code) 
with a set of root profile server components (identified 
by URNs described in the above paragraph).  The query 
server component supports one interface method, a 
query method.  The query method accepts a query object 
as a parameter, and returns back the same query object 
this time containing the federated results that it was able 
to collect from the OODT connected system.  To 
perform this result collection, the query component 
instantiates a base set of querier threads (recall Section 
2.1.3) which are each given a root profile server in the 
query server component’s initial list.  Each querier 
thread proceeds in parallel to query its respective profile 
server and retrieve resource profiles by which to 
discover locations of resources which satisfy the original 
query.  The querier threads use the algorithm described 
in Section 2.1.3 to examine each resource profile’s 
resource class attribute to determine how to go about 
reaching an eventual data product.  Once all the original 
(and any additional Querier threads which were created) 
are finished collecting products, the method returns the 
query object with all the collected results. 
 
4. Experience and Evaluation 

In this section, we discuss a deployment of the 
OODT middleware in the Planetary Science domain, 
with NASA’s Planetary Data System [11].  We follow 
by presenting another OODT deployment supporting 
Cancer Research with NCI’s Early Detection Research 
Network (EDRN) [12]. 

 
4.1 Planetary Data System 

The Planetary Data System (PDS) manages and 
archives planetary science data for NASA’s Office of 
Space Science.  It has been in existence since the late 
1980’s and to this point has collected approximately six 

terabytes of data, which pre-OODT was distributed and 
archived for scientists on CD and DVD media.  The 
PDS is divided up into eight discipline “nodes”, which 
are geographically distributed across the country (shown 
in Figure 3).  Each node is responsible for managing and 
distributing its own particular planetary science data 
which is cumbersome due to their geographically 
diverse locations, and different methodologies 
(discussed below) for storing and accessing their data.  
    

 
Figure 3.  PDS Geographic Diversity 
 

The OODT middleware was used in 2002 to deploy 
an infrastructure for the distribution of PDS data from 
all eight nodes via the internet.  OODT product server 
components wrapped data resources at each PDS node 
(a total of 8 active Product Servers) and a master set of 5 
Profile Servers were used to profile the data resources 
exposed by the OODT product Server components.  To 
tie everything together, a web search page was 
constructed to allow a user to pose a federated query 
across the entire PDS, and receive back the federated 
PDS data.  The web portal search page poses its queries 
to an OODT query server, seeded with the master set of 
profile servers mentioned above. 

 
Figure 4.  PDS deployment using the OODT style 
and middleware 
 



To begin, we evaluate the PDS deployment against 
the 4 initial data-intensive issues (recall Section 1) 
and present our evaluation in Table 2 below.  + 
indicates full support for the data-intensive issue, - 
indicates anything less than full support. 

 
Further, we evaluate the PDS deployment against the 

following additional dimensions in order to highlight 
both the heterogeneity of the distributed system, along 
with its data-intensive nature: 

1. Operating System that each PDS node is running 
2. Underlying data source that each product server 

integrates 
3. Amount of data served back by each PDS node 

(including both resource profile queries, and 
product queries) 

4. Number of data products transferred at each 
PDS product server 

Our results are summarized in Table 3. 

 
 Since 11/15/2002, the PDS Product Server 

components have transferred 25GB of PDS Data 
Products to Scientists across the country (note that the 
25GB so far are not including the full distributions of 
Mars Global Surveyor, Mars Odyssey, and upcoming 
MRO missions because all of the data has not been 
delivered to the PDS yet)  

Table 4 helps to illustrate the benefit of OODT in the 
PDS.  Before OODT, PDS data was distributed via CD 
and DVD media, and the PDS nodes had to mail out 
CDs and DVDs to scientists which contained the 
planetary science data from the missions which they 

desired to study.  In part, this is due to the heterogeneity 
of the data stored at each PDS node, and each node’s 
neglect to focus on data system interoperability software 
architecture.  Since OODT, the data can now be 
distributed, and accessed via the web, as if the data 
stored in a single virtual data source. PDS nodes can 
also download the OODT middleware implementation 
framework and create their own OODT components 
which will plug into the existing middleware 
infrastructure, which will help to discourage 
construction of “one-off” data systems which have to be 
integrated at a later time.  In Table 4, we show 3 
NASA/JPL missions, Mars Global Surveyor (MGS), 
Mars Odyssey (Odyssey), and Mars Reconnaissance 
Orbiter (MRO) and the amount of science data (in 
terabytes) that each mission was set to produce.  The last 
column, Cost, shows the estimated cost for distributing 
those PDS products on DVD media, and mailing out the 
PDS data to the scientists, using the old data delivery 
method that NASA was forced to use because of the 
PDS heterogeneity.  The upcoming MRO mission is set 
to produce a un-precedented 224 terabytes of data which 
pre-OODT would have cost NASA an estimated 186 
million dollars to distribute to the planetary scientists 
who need the data to perform their research.  

 
4.2 Early Detection Research Network 
 

The National Cancer Institute’s Early Detection 
Research Network [12] is a network of over 30 cancer 
research sites participating in research geared towards 
the early detection of cancer.  Particularly of interest to 
EDRN is cancer biomarker data [12].  Similar to the 
PDS, each EDRN site is geographically distributed 
across the United States, and each site contains data 
systems which do not interoperate and commingle with 
the other EDRN sites’ data systems.  The ability to 
correlate this information is critical to cancer research in 
that it has been shown that as study volumes increase, so 
does the rate of scientific discovery [12].  Also, in terms 
of validating and testing biomedical data, it is important 
to compare and contrast similar data at different EDRN 
sites. 

  The OODT middleware is currently supporting 
EDRN by providing the middleware infrastructure to 
integrate the distributed cancer research data located 
across EDRN’s sites.  Product servers at 9 of the current 
EDRN locations wrap site specific data sources, and 
expose the cancer data to the overall system. A Profile 
server, located at Fred Hutchinson Cancer Research 
Center in Seattle provides the means for discovery of the 
existing product servers in the network.  A portal web 



page, the ERNE (EDRN Resource Network Exchange) 
[12] provides web-based access to the OODT-based 
query system. 

 

 
Figure 5.  EDRN Geographic Diversity 

 
Below, we present the EDRN deployment which 

was built using the OODT style software 
architecture.  OODT currently is deployed at 9 of the 
existing EDRN sites, 8 of which are shown in the 
diagram below. 

 

 
Figure 6.  EDRN deployment using OODT style 
and middleware. 
 

We begin by evaluating the EDRN deployment 
against the initial data-intensive issues (recall Section 
1) and present our evaluation in Table 5 below. 

 
Each EDRN site besides the DMCC (Data 

Management Coordinating Center) at Fred 
Hutchinson Cancer Research Center in Seattle 

employs a product server for Data Access (the 
DMCC hosts the system’s profile server) and 
therefore each EDRN site provides some level of 
Data Model Integration (via each product server’s 
t(q) function).  Since each product and profile server 
employs a standard software interface, each site 
provides a level of software interface integration.  
Finally,   Data Discovery is facilitated by the DMCC 
site because it contains the profile server which 
contains the initial list of product servers which are 
available to satisfy resources.   

To conclude our evaluation, we further evaluate 
our EDRN deployment against the dimensions used 
in Table 3 to evaluate system heterogeneity and data-
intensive nature.  The results of our evaluation are 
shown in Table 6. 

 
Our evaluation is shown for 6 of the EDRN sites of 

which we had recorded data for.  The EDRN data above 
has been recorded since 1/14/03.  N/A indicates that 
data was not available for a particular site. 

 
5. Related Work 

The work-in-progress by Kolp and Mylopoulos [13] 
models information systems using business-
organizational structure as an architectural style, and 
argues that Multi-agent Systems (MAS) should be 
considered as a construct for information system 
architectural styles.  They primarily focus on the domain 
of business information systems.  They are also 
restricting their study to requirements engineering and 
conceptual architecture for such systems.  On the other 
hand, our goal is to provide end-to-end software 
development solutions, spanning the entire software 
engineering lifecycle for data-intensive systems.  

Gomaa et al. [14,15] present a novel architecture for 
describing large-scale data-intensive information 
systems, specifically applied to NASA’s EOSDIS 
science domain.  This work is closely related to ours, 
but focuses only on a single style – federated client-
server [16].  Furthermore, they present no fine-grained 
mapping of the conceptual architecture to the 



deployment architecture, or middleware-based solutions 
for implementing the data-intensive system.  The 
EOSDIS system also suffered from many design flaws, 
which are discussed in [17]. 

Moore et al. [18] define Data-intensive systems as 
systems which are IO-bound.  They specifically describe 
the SDSC1 Storage Request Broker (SRB) and how it 
can be used to abstract domain-specific data sources 
using a layered architectural style [19].  Moore et al. 
also presents a table2 defining a basic set of application 
requirements for data-handling environments.  In 
contrast, our approach aims to perform such work 
throughout the software engineering lifecycle for data-
intensive systems.  Furthermore, as discussed below in 
the context of grids, layered service architectures 
provide no insight into the effective topologies of a 
system’s constituent software components and 
connectors.  Layered service architectures also typically 
provide little guidance about the legal behaviors of 
components, as laid out in deployment architectures. 

Recent work in the Grid Community [1] has 
characterized a class of distributed data interoperable 
systems as Data Grids [20].  Data Grids are discussed 
architecturally in terms of a layered services architecture 
[19], and web-serviced based [21] middleware 
implementation.  This approach is similar to ours in the 
sense that the architecture is developed first, and then 
middleware is instantiated to implement the architectural 
constructs.  However, there has been no focus on 
mapping system requirements to architectural 
components and, furthermore, to implementation-level 
artifacts in the data grid community.  In fact, it has been 
recognized that initial efforts on data grids (and the grid 
community as a whole) have focused on “getting it to 
work” rather than system scalability, evolution, or 
design [22]. 

Singh et al. [23] define a metadata catalog service 
(MCS) component, but do not describe its relationship 
in full to the layered services architecture adopted by the 
grid community (e.g., the Globus toolkit [1]) nor to its 
deployment and interactions with other grid 
components.  Singh et al. focus on the MCS 
component’s scalability, which is indicative of the grid 
community’s tendency to focus on super-computing 
challenges, as opposed to effective software engineering 
methodologies.  Our work is geared towards uniting 
formal software engineering principles with the design 
of data-intensive information integration systems such 
as data grids. 

Sun’s Enterprise Java Beans (EJB) [24] are 
extensible software components which are tightly 
coupled to an underlying middleware infrastructure 
providing network services, secure transactions and 
                                                           
1 San Diego Supercomputing Center 
(http://www.sdsc.edu)  
2 Table 5.2 in [18] 

component discovery.  EJB are popular in industry as 
implementation-level constructs supporting the 
development of distributed systems.  EJB provide no 
native support; however, for data-intensive issues such 
as data access, data discovery and data model 
correlation that our work supports.  Indeed, our work 
has focused on using middleware implementation 
infrastructures such as EJB to support basic component 
services, and then providing middleware-specific 
implementations of Product Servers, Profile Servers, and 
Query Servers to support data-intensive functionality.  
EJB could be envisaged as an implementation-specific 
OODT messaging layer connector. 
6. Open Issues 

There remain several open issues with OODT that 
we will address briefly in this section.  First and 
foremost, architecting, and deploying OODT software 
architectures, and subsequent middleware is very 
programmer-intensive.  By “programmer-intensive” we 
mean that a programmer is required to be “in the loop” 
in order to successfully deploy and architect these 
systems.  This is due to the fact that the programmer is 
responsible for translating OODT architectural 
constructs into extensions of our existing middleware 
framework (recall Section 3).  Typically, a programmer 
will be involved in the early phases of the software 
process, helping to gather requirements, and translate 
requirements into some tailoring, configuration and 
deployment of existing OODT code.   

One way of addressing problems like these has 
typically been to provide architectural design tools, such 
as UC Irvine’s xADL [25] for software designers to 
create architectural diagrams, and then have a way of 
mapping those architectural diagrams to software 
implementation and code deployment.  There is existing 
work in this area [26], and we aim to research and 
construct tool support to model and deploy architectures 
and software systems in the OODT-style. 

The OODT middleware also assumes a reliable 
network is present in order for the Product, Profile, and 
Query Servers to communicate across.  We currently 
have no support for issues such as disconnected 
operation [27], and off-loading of data to support 
unreliable hosts.  This type of fault-tolerance is crucial 
in data-intensive systems which may be deployed in 
unreliable environments. 

 
7. Conclusions 

We have presented OODT, an architectural style and 
middleware implementation for data-intensive systems.  
We feel that data-intensive systems have been a 
neglected area of research in the software engineering 
and software architecture communities, and we desire to 
apply formal software architectural methodologies to the 
design, implementation, and evolution of data-intensive 
systems.  The OODT style and middleware was 



developed at NASA’s Jet Propulsion Laboratory and has 
been supporting NASA’s Planetary Data System in the 
Planetary Science Domain.  The OODT middleware also 
supports Cancer Research, and is currently deployed at 
the National Institute of Health’s National Cancer 
Institute, supporting the EDRN (Early Detection 
Resource Network) task.   
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